Copied to
clipboard

G = C32×C7⋊C3order 189 = 33·7

Direct product of C32 and C7⋊C3

direct product, metabelian, supersoluble, monomial, A-group, 3-hyperelementary

Aliases: C32×C7⋊C3, C7⋊C33, C21⋊C32, (C3×C21)⋊3C3, SmallGroup(189,12)

Series: Derived Chief Lower central Upper central

C1C7 — C32×C7⋊C3
C1C7C7⋊C3C3×C7⋊C3 — C32×C7⋊C3
C7 — C32×C7⋊C3
C1C32

Generators and relations for C32×C7⋊C3
 G = < a,b,c,d | a3=b3=c7=d3=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >

Subgroups: 188 in 56 conjugacy classes, 34 normal (5 characteristic)
C1, C3, C3, C7, C32, C32, C7⋊C3, C21, C33, C3×C7⋊C3, C3×C21, C32×C7⋊C3
Quotients: C1, C3, C32, C7⋊C3, C33, C3×C7⋊C3, C32×C7⋊C3

Smallest permutation representation of C32×C7⋊C3
On 63 points
Generators in S63
(1 57 29)(2 58 30)(3 59 31)(4 60 32)(5 61 33)(6 62 34)(7 63 35)(8 43 36)(9 44 37)(10 45 38)(11 46 39)(12 47 40)(13 48 41)(14 49 42)(15 50 22)(16 51 23)(17 52 24)(18 53 25)(19 54 26)(20 55 27)(21 56 28)
(1 15 8)(2 16 9)(3 17 10)(4 18 11)(5 19 12)(6 20 13)(7 21 14)(22 36 29)(23 37 30)(24 38 31)(25 39 32)(26 40 33)(27 41 34)(28 42 35)(43 57 50)(44 58 51)(45 59 52)(46 60 53)(47 61 54)(48 62 55)(49 63 56)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)
(1 8 15)(2 10 19)(3 12 16)(4 14 20)(5 9 17)(6 11 21)(7 13 18)(22 29 36)(23 31 40)(24 33 37)(25 35 41)(26 30 38)(27 32 42)(28 34 39)(43 50 57)(44 52 61)(45 54 58)(46 56 62)(47 51 59)(48 53 63)(49 55 60)

G:=sub<Sym(63)| (1,57,29)(2,58,30)(3,59,31)(4,60,32)(5,61,33)(6,62,34)(7,63,35)(8,43,36)(9,44,37)(10,45,38)(11,46,39)(12,47,40)(13,48,41)(14,49,42)(15,50,22)(16,51,23)(17,52,24)(18,53,25)(19,54,26)(20,55,27)(21,56,28), (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63), (1,8,15)(2,10,19)(3,12,16)(4,14,20)(5,9,17)(6,11,21)(7,13,18)(22,29,36)(23,31,40)(24,33,37)(25,35,41)(26,30,38)(27,32,42)(28,34,39)(43,50,57)(44,52,61)(45,54,58)(46,56,62)(47,51,59)(48,53,63)(49,55,60)>;

G:=Group( (1,57,29)(2,58,30)(3,59,31)(4,60,32)(5,61,33)(6,62,34)(7,63,35)(8,43,36)(9,44,37)(10,45,38)(11,46,39)(12,47,40)(13,48,41)(14,49,42)(15,50,22)(16,51,23)(17,52,24)(18,53,25)(19,54,26)(20,55,27)(21,56,28), (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63), (1,8,15)(2,10,19)(3,12,16)(4,14,20)(5,9,17)(6,11,21)(7,13,18)(22,29,36)(23,31,40)(24,33,37)(25,35,41)(26,30,38)(27,32,42)(28,34,39)(43,50,57)(44,52,61)(45,54,58)(46,56,62)(47,51,59)(48,53,63)(49,55,60) );

G=PermutationGroup([[(1,57,29),(2,58,30),(3,59,31),(4,60,32),(5,61,33),(6,62,34),(7,63,35),(8,43,36),(9,44,37),(10,45,38),(11,46,39),(12,47,40),(13,48,41),(14,49,42),(15,50,22),(16,51,23),(17,52,24),(18,53,25),(19,54,26),(20,55,27),(21,56,28)], [(1,15,8),(2,16,9),(3,17,10),(4,18,11),(5,19,12),(6,20,13),(7,21,14),(22,36,29),(23,37,30),(24,38,31),(25,39,32),(26,40,33),(27,41,34),(28,42,35),(43,57,50),(44,58,51),(45,59,52),(46,60,53),(47,61,54),(48,62,55),(49,63,56)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63)], [(1,8,15),(2,10,19),(3,12,16),(4,14,20),(5,9,17),(6,11,21),(7,13,18),(22,29,36),(23,31,40),(24,33,37),(25,35,41),(26,30,38),(27,32,42),(28,34,39),(43,50,57),(44,52,61),(45,54,58),(46,56,62),(47,51,59),(48,53,63),(49,55,60)]])

C32×C7⋊C3 is a maximal subgroup of   C324F7

45 conjugacy classes

class 1 3A···3H3I···3Z7A7B21A···21P
order13···33···37721···21
size11···17···7333···3

45 irreducible representations

dim11133
type+
imageC1C3C3C7⋊C3C3×C7⋊C3
kernelC32×C7⋊C3C3×C7⋊C3C3×C21C32C3
# reps1242216

Matrix representation of C32×C7⋊C3 in GL4(𝔽43) generated by

6000
0600
0060
0006
,
1000
03600
00360
00036
,
1000
042181
00181
042191
,
36000
028621
0600
06615
G:=sub<GL(4,GF(43))| [6,0,0,0,0,6,0,0,0,0,6,0,0,0,0,6],[1,0,0,0,0,36,0,0,0,0,36,0,0,0,0,36],[1,0,0,0,0,42,0,42,0,18,18,19,0,1,1,1],[36,0,0,0,0,28,6,6,0,6,0,6,0,21,0,15] >;

C32×C7⋊C3 in GAP, Magma, Sage, TeX

C_3^2\times C_7\rtimes C_3
% in TeX

G:=Group("C3^2xC7:C3");
// GroupNames label

G:=SmallGroup(189,12);
// by ID

G=gap.SmallGroup(189,12);
# by ID

G:=PCGroup([4,-3,-3,-3,-7,867]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^7=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations

׿
×
𝔽